\(\int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx\) [812]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 116 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {8 a^2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d} \]

[Out]

6/5*a*(a^2+5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*b*
(a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a^2*cos(
d*x+c)^(3/2)*(a+b*sec(d*x+c))*sin(d*x+c)/d+8/5*a^2*b*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4349, 3926, 4132, 3856, 2719, 4130, 2720} \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {2 b \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^2 b \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))}{5 d} \]

[In]

Int[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^3,x]

[Out]

(6*a*(a^2 + 5*b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*b*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2])/d + (8*a^2*b
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a^2*Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])*Sin[c + d*x])/(5*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3926

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}+\frac {1}{5} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {6 a^2 b+\frac {3}{2} a \left (a^2+5 b^2\right ) \sec (c+d x)+\frac {1}{2} b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}+\frac {1}{5} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {6 a^2 b+\frac {1}{2} b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{5} \left (3 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {8 a^2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}+\frac {1}{5} \left (3 a \left (a^2+5 b^2\right )\right ) \int \sqrt {\cos (c+d x)} \, dx+\left (b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {8 a^2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d}+\left (b \left (a^2+b^2\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {8 a^2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.23 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.72 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {2 \left (3 \left (a^3+5 a b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 b \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+a^2 \sqrt {\cos (c+d x)} (5 b+a \cos (c+d x)) \sin (c+d x)\right )}{5 d} \]

[In]

Integrate[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^3,x]

[Out]

(2*(3*(a^3 + 5*a*b^2)*EllipticE[(c + d*x)/2, 2] + 5*b*(a^2 + b^2)*EllipticF[(c + d*x)/2, 2] + a^2*Sqrt[Cos[c +
 d*x]]*(5*b + a*Cos[c + d*x])*Sin[c + d*x]))/(5*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(411\) vs. \(2(158)=316\).

Time = 169.41 (sec) , antiderivative size = 412, normalized size of antiderivative = 3.55

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+20 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b -2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{3}-10 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b +5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a^{2} b +5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, b^{3}-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a^{3}-15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a \,b^{2}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(412\)

[In]

int(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*a^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+8
*a^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+20*a^2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)*b-2*cos(1/2*d*x+1/
2*c)*sin(1/2*d*x+1/2*c)^2*a^3-10*a^2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*b+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^2*b+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*El
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*b^3-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipt
icE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^3-15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.59 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {2 \, {\left (a^{3} \cos \left (d x + c\right ) + 5 \, a^{2} b\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, \sqrt {2} {\left (i \, a^{2} b + i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-i \, a^{2} b - i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-i \, a^{3} - 5 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (i \, a^{3} + 5 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{5 \, d} \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/5*(2*(a^3*cos(d*x + c) + 5*a^2*b)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*sqrt(2)*(I*a^2*b + I*b^3)*weierstrassP
Inverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*sqrt(2)*(-I*a^2*b - I*b^3)*weierstrassPInverse(-4, 0, cos(d*
x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(-I*a^3 - 5*I*a*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co
s(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(I*a^3 + 5*I*a*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0
, cos(d*x + c) - I*sin(d*x + c))))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(5/2)*(a+b*sec(d*x+c))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^3*cos(d*x + c)^(5/2), x)

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^3*cos(d*x + c)^(5/2), x)

Mupad [B] (verification not implemented)

Time = 14.04 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.08 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {2\,b^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a\,b^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^2\,b\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{d}-\frac {2\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(5/2)*(a + b/cos(c + d*x))^3,x)

[Out]

(2*b^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*a*b^2*ellipticE(c/2 + (d*x)/2, 2))/d + (2*a^2*b*ellipticF(c/2 + (d*
x)/2, 2))/d + (2*a^2*b*cos(c + d*x)^(1/2)*sin(c + d*x))/d - (2*a^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([
1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))